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Néel order in the ground state of Heisenberg
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J Rodrigo Parreira†§, O Bolina‡‖ and J Fernando Perez‡+
† Department of Physics, Princeton University, PO Box 708, 08544-0708 Princeton, USA
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Abstract. We consider the ground state of one-dimensional antiferromagnets with long-range
interactions with Hamiltonian given by

H = −
∑
x

∑
n

(−1)nJ (n)Sx · Sx+n

whereJ (n) = Jn−α , with J > 0. We prove Ńeel order for all 1< α < 3 if the spin s is
sufficiently large. We also prove the absence of long-range order whenα > 3 for any spin
value.

1. Introduction

The antiferromagnetic Heisenberg model with long-range staggered interactions is defined
by the Hamiltonian

H3 = −
∑
x∈3

L∑
n=1

(−1)nJ (n)S (1)

where

3 = {0, 1, . . . , L} ⊂ Z
and L is an odd integer number, in order to avoid frustration when periodic boundary
conditions are chosen. We also define

J (n) = Jn−α J > 0, α > 0.

The Sx variables are usual spin operators at sitex such thatS2 = s(s + 1), obeying
the canonical commutation relations

[Six, S
j
y ] = iεijkS

k
xδxy.

This is exactly the model first discussed by Fröhlich et al in [1], where they proved that,
at T > 0, this system with 1< α < 2 presents Ńeel order for suffficiently large spins.

In this paper we show that, for this same model, long-range order (LRO) will be present
in the ground state, for a sufficiently large spin, when 1< α < 3. To obtain this result we
use infrared bounds [2] adapted for the study of ground states [3].
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We also show that this result is the best possible, since we prove that, ifα > 3,
LRO is impossible in the ground state for any spin value. This result can be achieved
by mimicking the proof of the Mermin–Wagner theorem [4] which shows the absence of
spontaneous magnetization in models with continuous symmetry ifd < 2. This can be
done with the use of an inequality proposed by Shastry [5] which plays the role of the
Bogoliubov inequality in the ground state.

The discussion about the energy gap between the ground state and the first excited states
in these systems is carried on elsewhere [6].

2. Definitions and notation

We first introduce the Fourier transform of an arbitrary functionf by

f̂ (k) = 1√
3

∑
x∈3

f (x) e−ikx

where k ∈ 3∗ ≡ {k = (2π/L)q; q = 0, 1, . . . , L}. Applying this definition to the
Hamiltonian (1) with periodic boundary conditions, we obtain

Ĥ3 =
∑
k∈3∗

∑
n

J (n)

2
[1− (−1)n coskn]Ŝ∗k · Ŝk. (2)

In fact, the Hamiltonian (2) is not equal to (1), since both operators differ by an additive
constant. This constant, however, will play no role in the subsequent analysis.

We also introduce the usual two-point function

ĝik = 〈ŜikŜi−k〉
where the expectation value of an observableA in the Gibbs ensemble is defined in the
standard way:

〈A〉 = Tr(A) exp{−βH}
Tr exp{−βH} .

The Duhamel two-point function, denoted by(A,B), is given by

(A,B) = 1

Tr exp{−βH}
∫ 1

0
dx Tr[exp{−xβH}A exp{−(1− x)βH}B].

From now on, whenever ambiguities are absent we shall representŜk by Sk.

3. Existence of LRO for 1< α < 3

The first condition to be imposed on the exchange function in (1) is due to the
thermodynamic stability of the system. We need

∑
n J (n) <∞⇒ α > 1.

The property of reflection positivity for the model defined by (1) was proved in [1].
For systems satisfying this property it is possible to derive the infrared bound, which is an
upper bound for the two-point function based on the Duhamel inequality [2]:

gik 6
1

2

[( 3∑
i=1

Bik

)( 3∑
i=1

Cik

)] 1
2

coth

[
β

2

(∑3
i=1C

i
k∑3

i=1B
i
k

)1
2
]
= Gk.

Here,

Bk =
3∑
i=1

Bik =
3∑

n J (n)[1− (−1)n coskn]
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so that the Duhamel two-point function is bounded by

(Sik, S
i
−k) 6

Bik

2β
. (3)

This Gaussian domination result can be derived by performing chessboard estimates over
a model which is defined by a reflection positive Gibbs measure (for more details on this
subject the reader is referred to [1]).

The term
∑3

i=1C
i
k = Ck is an upper bound to the expected value of the double

commutator
∑3

i=1[Sik, [Ĥ3, Si−k]]. This double commutator can be evaluated explicitly

3∑
i=1

[Sik, [Ĥ3, Si−k]] = −
4

3

∑
x

∑
n

J (n)

2
(−1)n(1− coskn)Sx · Sx+n

leading to the operator inequality:

3∑
i=1

[Sik, [Ĥ3, Si−k]] 6 −4

[∑
n

J (n)

2
(−1)n(1− coskn)

]
s(s + 1) = Ck.

The sum rule

1

3

∑
k∈3∗

3∑
i=1

gik = s(s + 1)

follows from S2 = s(s + 1) so that

1

3

3∑
i=1

gik=π = s (s + 1)− 1

3

∑
k 6=π

Gk.

We want to study the ground state of the system and so we first take the limit
β → ∞ with fixed 3, and then the limitL → ∞. Taking into account the inequality
cothx 6 1+ 1/x, we obtain [3]

lim
L→∞

1

3

3∑
i=1

giπ > D −
1

4π

+π∫
−π

dk

[( 3∑
i=1

Bik

)( 3∑
i=1

Cik

)]1
2

.

Therefore, a sufficient condition for long-range Néel order is that the right-hand side is
positive. It turns out that this condition leads to

[s(s + 1)]
1
2 >

1

2π

+π∫
0

dk

{−6
∑

n J (n)(−1)n(1− coskn)∑
n J (n)[1− (−1)n coskn]

}1
2

= I.

We are now in the position to state the following theorem.

Theorem 1. For the model described above, withJ (n) = Jn−α for every 1< α < 3, there
existss(α) <∞ such that the system will show LRO at zero temperature ifs > s(α).

Proof. We must show that for a certain interval of values ofα there existsI such that
I < I <∞.

The numerator can be bounded by∑
n

n−α(−1)n(1− coskn) 6 2
∑
n

n−α(−1)n = 2A(α).
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Then makingk→ k + π in I , we establish the inequality

I 6 2
√
−12A(α)

π∫
0

dk
1

[
∑

n n
−α(1− coskn)]1/2

.

We also have∑
n

n−α(1− coskn) >
[π/k]∑
n=1

n−α(1− coskn)

where [π/k] is the least integer smaller or equal toπ/k.
The function(1− coskn) that appears above is now substituted by a quadratic function

that contains its limits inkn = 0 andkn = π , producing
[π/k]∑
n=1

n−α(1− coskn) > 2
k2

π2

[π/k]∑
n=1

n2−α. (4)

Two distinct estimations can now be performed, according to the fact thatα 6 2 or α > 2.
If 1 < α 6 2,

2
k2

π2

[π/k]∑
n=1

n2−α > 2
k2

π2

[π
k

]
= fα62(k).

If α > 2 we then have

k2

π2

[π/k]∑
n=1

n2−α > 2
π(1−α)

k(1−α)
= fα>2(k).

At this point we obtain
(i) 1 < α 6 2,

I 6 I =
√
−12A(α)

∫ π

0
dk

1√
fα62(k)

<∞

for anyα in the given interval;
(ii) α > 2,

I 6 I =
√
−12A(α)

∫ π

0
dk

1√
fα>2(k)

so that the above integral is finite whenever(1− α)/2 > −1, implying α < 3. The
condition for LRO can then be restated as

[s(s + 1)]
1
2 > I

which can always be made true forα < 3 ands sufficiently large. �

4. Absence of order forα > 3

It is now convenient to redefine the Hamiltonian by

H̃3 = h
∑
x∈3
(−1)xS3

x +
( L∑
n=1

(−1)nJ (n)Sx · Sx+n
)
= H3 + h

√
|3|Ŝπ

whereh represents an external field that will later be taken in the limith → 0. We now
define the spontaneous magnetization as

σ(h) = lim
|3|→∞

1

|3|
〈∑
x∈3

S3
x eiπx

〉
3

and state the following.
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Theorem 2. If α > 3 we have

lim
h→0

σ(h) = 0.

Proof. Our proof follows from the following inequality [5],

〈{b†, b}〉
√
〈[[a†, H̃3], a]〉(a†, a)β > |〈[a†, b]〉|2 (5)

where a, b are self-adjoint operators. The problem is now reduced to performing a
convenient choice of the operatorsa andb. We shall take

a† = S−−k and b = S+k+π .
HereS±k are the Fourier transforms of the operatorsS±x = S1

x ± iS2
x .

We then have, on the right-hand side of (5),

〈[a†, b]〉 = 〈[S−−k , S+k+π ]〉 = 2σ(h).

The anticommutator on the left-hand side is given by

〈{b†, b}〉 = 1

|3|
∑
x,y

〈S−x S+y e−iπ(y−x) e−ik(y−x) + S+x S−y e−iπ(x−y) e−ik(x−y)〉

so that summing both sides overk we obtain the inequality∑
k∈3∗
〈{b†, b}〉 6 |3|s(s + 1)

by using the translation invariance of the expected value followed by an estimation in the
norm. The double commutator in (5) can also be estimated in the norm after an explicit
calculation

〈[[a†, H̃3], a]〉 6 4
∞∑
n=1

{(1− coskn)n−αs(s + 1)+ |hσ(h)|}.

The Duhamel two-point function can be bounded in the following way

(a†, a) = (S1
−k, S

1
k )+ (S2

−k, S
2
k )+ 2i(S2

k , S
1
k )

where we used the reality of the operatorS1 and the fact thatS2
k = −S2

−k. By applying the
Schwarz inequality to estimate the modulus of the imaginary term above we obtain

(a†, a) 6 (S1
−k, S

1
k )+ (S2

−k, S
2
k )+ 2

√
(S1
−k, S

1
k )(S

2
−k, S

2
k )

so that the infrared bound (3) produces

(a†, a) 6 2

βEk
k 6= π

whereEk =
∑

n[1− (−1)n coskn]n−α.
Putting it all together, summing both sides overk and using the parity of the integrand,

we have whenL→∞

s(s + 1) > 2σ(h)2

π

∫ π

0
dk

{
Ek

2[
∑

n(1− coskn)n−αs(s + 1)+ |hσ(h)|]
}1/2

= 2σ(h)2I (α, h).
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We must now search forI(α, h) 6 I (α, h) such that limh→0 I(α, h)→∞, in which case
limh→0 σ(h) = 0. We first look at the denominator of the integrand, where we use the
inequality 1− coskn 6 k2n2/2:

I (α, h) > 2

π

∫ π

0
dk

{
Ek

2[
∑

n k
2n2−αs(s + 1)+ |hσ(h)|]

}1/2

.

The numerator can be bounded in the following way (4):∑
n

[1− (−1)n coskn]n−α =
∑
n

[1− cos(k + π)n]n−α

> 2(k + π)2
π2

∑
n

n2−α = 2(k + π)2
π2

R(α)

and we notice thatR (α) <∞ if α > 3.
Now we haveI(α, h) = I1(α, h)+ I2(α, h), where

I1(α, h) = 2
√

2R(α)

π2

∫ π

0
dk

k

{2[
∑

n k
2n2−αs(s + 1)+ |hσ(h)|]}1/2

which is finite forα > 3 in the limit h→ 0, and

I2(α, h) = 2
√

2R(α)

π2

∫ π

0
dk

π

{2[
∑

n k
2n2−αs(s + 1)+ |hσ(h)|]}1/2

which has a logarithmic divergence whenh → 0, indicating that LRO does not occur if
α > 3. �
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